Machine Learning

Duration: 72 Hours, 3 Days per week, 2 Hours per day

Module	Major Categories	Duration
Module 01	Programming with Python and Related Libraries of Machine	12 Hours
	Learning	
Module 02	Traditional Machine Learning Algorithms and Projects	24 Hours
Module 03	Concepts and Uses of Deep Learning and Real Life Projects	36 Hours

Module 01: Programming with Python and Related Libraries of Machine Learning

Section		Topics				
1.1	Introduc	ction to Python and Programming Fundamentals				
	1.1.1	1.1.1 Basic syntax of Python and data types				
	1.1.2	Variables, Basic arithmetic and logical operations	02 Hours			
	1.1.3	Hands-on exercises for basic data type and variable operations				
1.2	Conditio	onal Statement in Python				
	1.2.1	1.2.1 Syntax of if statements				
	1.2.2	Syntax of if-else statements	02 Hours			
	1.2.3	Syntax of nested if statements				
	1.2.4	Syntax of elif statements				
1.3	Introduc	ction to Iteration and Advanced Iteration Techniques				
	1.3.1	Basic syntax and examples of for and while loop in Python				
	1.3.2	Nested Loops and their applications, Loop control statements (i.e., break and continue)	02 Hours			
	1.3.3	Range function and its usage in loops				

1.4	Introduc	Introduction to Python Functions				
	1.4.1	Overview of functions in Python, Creating and calling a function				
	1.4.2	Function arguments and parameters, Default parameters	02 Hours			
	1.4.3	Importing modules and libraries, Using functions from libraries				
	1.4.4	Understanding the Python standard library and popular third-party libraries				
1.5	Data Str	Data Structures				
	1.5.1	Understanding the difference between lists and tuples, Creating, indexing and slicing lists and tuples				
	1.5.2	Introduction to dictionaries and their use, Common dictionary methods like keys(), values(), items() and so on.	02 Hours			
	1.5.3	Introduction to sets, Set operations: union(), intersection(), difference() and symmetric_difference()				
1.6	Concept	s of Machine Learning Related Libraries of Python				
	1.6.1	Introduction to Numpy arrays and their use.				
	1.6.2	Introduction to Pandas DataFrames and their use	02 Hours			
	1.6.3	Introduction to Matplotlib for data visualization				
	1.6.4	Overview to scikit-learn for machine learning algorithms				

Module 02: Traditional Machine Learning Algorithms and Projects

Section			Topics	Duration		
	Backgr	ound of M	achine Learning			
	2.1.1	Overview of Machine Learning				
	2.1.2	Categorie	es of Machine Learning Algorithm			
	2.1.3	Parametr	ric and Non-Parametric Machine Learning Algorithm			
	2.1.4	Supervised, Unsupervised and Semi-supervised Learning				
2.1		2.1.4.1	Difference among Regression, Classification, Clustering and Dimensionality Reduction Technique in Machine Learning	02 Hours		
	2.1.5	The Bias-	Variance Trade-Off			
	2.1.6	Overfittir	ng and Underfitting			
	2.1.7	How to D	etect Overfitting and Underfitting?			
	2.1.8	Reasons	for Overfitting anf Underfitting			
	2.1.9	How to P	revent Overfitting and Underfitting?			
	Popula	r Machine	Learning Algorithms			
		Linear M	achine Learning Algorithms			
	2.2.1	2.2.1.1	Linear Regression			
	2.2.1	2.2.1.2	Logistic Regression			
		2.2.1.3	Linear Discriminant Analysis			
		Non-Line	ar Machine Learning Algorithms			
		2.2.2.1	Classification and Regression Trees			
2.2		2.2.2.2	Naive Bayes	02 Hours		
	2.2.2	2.2.2.3	K Nearest Neighbour			
		2.2.2.4	K-Means			
		2.2.2.5	Linear Vector Quantization			
		2.2.2.6	Support Vector Machine			
		Ensemble	e Algorithms			
	2.2.3	2.2.3.1	Bagging and Random Forest			
		2.2.3.2	Boosting and AdaBoost			
2.3	Implen	nentation	of Machine Learning Algorithms in Python			

		How To L	oad Machir	ne Learning Data	
	2.3.1	2.3.1.1		File with NumPy	
		2.3.1.2	Load CSV	File with Pandas	
		Understa	nd Your Dat	ta with Descriptive Statistics	
		2.3.2.1	Peek the [Data	
	•	2.3.2.2	Dimension	ns of the Data	02 Hours
		2.3.2.3	Data Type	of Each Attribute	
	2.3.2	2.3.2.4	Descriptiv	e Statistics	
		2.3.2.5	Number o	f Class Distribution	
		2.3.2.6	Correlatio	ns between Attributes	
		2.3.2.7	Skew of U	nivariate Distributions	
		Understa	1	ta with Visualization	
			Univariate		
		2.3.3.1	3.3.1.1	Histogram	
	2.3.3		3.3.1.2	Density Plots	O2 Hours
		2.3.3.2	3.3.1.3	Box and Whisker Plots	
			Multivaria		
			3.3.2.1	Correlation Matrix Plot	
			3.3.2.2	Scatter Plot Matrix	
	i		processing		
		2.3.4.1	Needs for	Data Pre-processing	
	2.3.4	2.3.4.2	Rescale Da	ata	
	2.3.4	2.3.4.3	Standardiz	ze Data	02 Hours
	•	2.3.4.4	Normalize	Data	
		2.3.4.5	Binarize D	ata (Make Binary)	
				r Machine Learning	
		2.3.5.1	Needs for	Feature Selection	
	2.3.5	2.3.5.2	Univariate	Selection	
	2.5.5	2.3.5.3	Recursive	Feature Elimination	
		2.3.5.4	Principal C	Component Analysis	02 Hours
		2.3.5.5	Feature In	nportance using Bagged decision trees	
		Train and	Test Datase	et Split	
	2.3.6	2.3.6.1	Split into 7	Frain and Test Sets	
		2.3.6.2	K-fold Cro	ss Validation	

	2.3.6.3	Leave One	Out Cross Validation	
	2.3.6.4	Repeated R	Random Test-Train Splits	
	Performa	nce Matrix		
		Classification	on Metrics	
		2.3.7.1.1	Classification Accuracy	
	2.3.7.1	2.3.7.1.2	Logarithmic Loss	
		2.3.7.1.3	Area Under ROC Curve	
2.3.	7	2.3.7.1.4	Confusion Matrix	02 Hours
		2.3.7.1.5	Classification Report	
		Regression	Metrics	
	2.3.7.2	2.3.7.2.1	Mean Absolute Error	
	2.317.12	2.3.7.2.2	Mean Squared Error	
		2.3.7.2.3	R Squared Metric	
	Spot-Che	ck Classificat	tion Algorithms	
		Linear Class	sification Algorithms	
	2.3.8.1	2.3.8.1.1	Logistic Regression	
		2.3.8.1.2	Linear Discriminant Analysis	
2.3.	8	Non-linear	Classification Algorithms	02 Hours
	2.3.8.2	2.3.8.2.1	k-Nearest Neighbors	
		2.3.8.2.2	Naive Bayes	
		2.3.8.2.3	Classification and Regression Trees	
		2.3.8.2.4	Support Vector Machines	
	Spot-Che	ck Regressio	n Algorithms	
		Linear Regr	ression Algorithms	
	2.3.9.1	2.3.9.1.1	Linear Regression	_
		2.3.9.1.2	Ridge Regression	
2.3.	9	2.3.9.1.3	LASSO Linear Regression	02 Hours
=:0:		2.3.9.1.4	Elastic Net Regression	UZ HOUIS
		Non-linear	Regression Algorithms	
	2.3.9.2	2.3.9.2.1	k-Nearest Neighbors	
		2.3.9.2.2	Classification and Regression Trees	
		2.3.9.2.3	Support Vector Machines	
2.3.1	.0 Compare	Machine Le	arning Algorithms	
	Automat	e Machine Le	earning Workflows with Pipelines	
2.3.1	.1 2.3.11.1	Data Prepa	ration and Modeling Pipeline	02 Hours
	2.3.11.2	Feature Ext	raction and Modeling Pipeline	
	Performa	nce Improve	ement with Ensembles	
2.3.1	.2	Combine M	Iodels Into Ensemble Predictions	02 Hours
	2.3.12.1	2.3.12.1 2.3.12.1.1	Bagging Algorithms	02 110015
			2.3.12.1.1.1 Concepts of Begging	

[Type here]

					Algorithm	
				2.3.12.1.1.2	Random Forest	
				Boosting Algo	orithms	
			2.3.12.1.2	2.3.12.1.2.1	Concepts of Boosting	
			2.3.12.1.2		Algorithm	
				2.3.12.1.2.2	AdaBoost	
			2.3.12.1.3	Voting Ensem	nble	
		Performa	nce Improve	ement with Alg	orithm Tuning	
2.3	3.13	2.3.13.1	Grid Search	n Parameter Tu	ining	02 Hours
		2.3.13.2	Random Se	arch Paramete	er Tuning	

Module 03: Concepts and Uses of Deep Learning and Real Life Projects

Section		Topics	Duration			
3.1	Basic of	Biological Neural Networks and It's Learning Process				
	3.1.1	3.1.1 Structure of Biological Neuron				
	3.1.2	Learning Process of Biological Neuron				
3.2	Pattern	recognition, Feature vector and Feature Vector	02 Hours			
	3.2.1	Definition of Pattern Recognition				
	3.2.2	Block Diagram of Typical Pattern Recognition System				
	3.2.3	Feature Vector and Feature Space with Real Life Example				
3.3	Simulati	ion Procedure of Biological Neuron into Machine	02 Hours			
	3.3.1	Outline of Basic Model of Biological Neuron				
	3.3.2	Overview of Thresholding Function				
	3.3.3	Single Layer Perceptron Learning Algorithm				
	3.3.4	Limitations of Single Layer Perceptron Learning Algorithm				
3.4	Multilay	ver Perceptron Neural Networks Algorithms	04 Hours			
	3.4.1	Architectural Overview of Multilayer Perceptron Neural Networks				
	3.4.2	Credit Assignment Problem, Characteristics of Linear and Sigmoidal Thresholding Function				
	3.4.3	Algorithm Steps of Multilayer Perceptron Neural Networks Algorithm				
	3.4.4	How does Hidden Layer Act as a Feature Detector?				
	3.4.5	Visualizing Network Behaviour in 2D and 3D Form				
	3.4.6	Decision Boundaries or Regions Formed by introducing Different Number of Layers				
3.5	Deep Le	arning with Python				

3.5.1	Deep Le						
	3.5.1.1	Introduction to Keras, Theano and TensorFlow Backends for Keras	02 Hours				
	3.5.1.2	Build Deep Learning Models with Keras					
3.5.2	Develop	the First Neural Network With Keras					
	3.5.2.1	Load Data					
	3.5.2.2	Define Model					
	3.5.2.3	Compile Model					
	3.5.2.4	Fit Model					
	3.5.2.5	Evaluate Model					
3.5.3	Evaluate	The Performance of Deep Learning Models	02 Hours				
	3.5.3.1	3.5.3.1 Empirically Evaluate Network Configurations					
	3.5.3.2	Data Splitting					
	3.5.3.3	3.5.3.3 Manual k-Fold Cross Validation					
3.5.4	Use Kera Learning	as Models With Scikit-Learn For General Machine					
	3.5.4.1	Evaluate Models with Cross Validation					
	3.5.4.2	Grid Search Deep Learning Model Parameters					
3.5.5	Project:	Multiclass Classification Of Flower Species	02 Hours				
	3.5.5.1	Overview of Iris Flowers Classification Dataset					
	3.5.5.2	Import Classes and Functions					
	3.5.5.3	Initialize Random Number Generator					
	3.5.5.4	Load The Dataset					

	3.5.5.5	Encode The Output Variable	
	3.5.5.6	Define The Neural Network Model	
	3.5.5.7	Evaluate The Model with k-Fold Cross Validation	
3.5.6	Project:	Binary Classification Of Sonar Returns	02 Hours
	3.5.6.1	Overview of Sonar Object Classification Dataset	
	3.5.6.2	Baseline Neural Network Model Performance	
	3.5.6.3	Improve Performance With Data Preparation	
	3.5.6.4	Tuning Layers and Neurons in The Model	
3.5.7	Project:	Regression Of Boston House Prices	02 hours
	3.5.7.1	Overview of Boston House Price Dataset	
	3.5.7.2	Develop a Baseline Neural Network Model	
	3.5.7.3	Lift Performance By Standardizing The Dataset	
	3.5.7.4	Tune The Neural Network Topology	
3.5.8	Understa	and Model Behavior During Training By Plotting History	02 Hours
	3.5.8.1	Access Model Training History in Keras	
	3.5.8.2	Visualize Model Training History in Keras	
3.5.9	Reduce (Overfitting With Dropout Regularization	
	3.5.9.1	Dropout Regularization For Neural Networks	
	3.5.9.2	Dropout Regularization in Keras	
	3.5.9.3	Using Dropout on the Visible Layer	
	3.5.9.4	Using Dropout on Hidden Layers	

3.5.10	Lift Perfo	rmance With Learning Rate Schedules	02 Hours				
	3.5.10.1	Learning Rate Schedule For Training Models					
	3.5.10.2	3.5.10.2 Ionosphere Classification Dataset					
	3.5.10.3	Time-Based Learning Rate Schedule					
	3.5.10.4	Drop-Based Learning Rate Schedule					
3.5.11	Basic Cor	ncepts of Convolutional Neural Networks	02 Hours				
	3.5.11.1	The Case for Convolutional Neural Networks					
	3.5.11.2	Building Blocks of Convolutional Neural Networks					
	3.5.11.3	Convolutional Layers					
	3.5.11.4	Pooling Layers					
	3.5.11.5	Fully Connected Layers					
	3.5.11.6	Worked Example					
	3.5.11.7	Convolutional Neural Networks Best Practices					
3.5.12	Project: F	Handwritten Digit Recognition	02 Hours				
	3.5.12.1	Overview of Handwritten Digit Recognition Dataset					
	3.5.12.2	Loading the MNIST dataset in Keras					
	3.5.12.3	Baseline Model with Multilayer Perceptrons					
	3.5.12.4	Simple Convolutional Neural Network for MNIST					
	3.5.12.5	Larger Convolutional Neural Network for MNIST					
3.5.13	Improve	Model Performance With Image Augmentation	02 Hours				
	3.5.13.1	Keras Image Augmentation API					

_			_
	3.5.13.2	Point of Comparison for Image Augmentation	
	3.5.13.3	Feature Standardization	
	3.5.13.4	ZCA Whitening	
	3.5.13.5	Random Rotations	
	3.5.13.6	Random Shifts	
	3.5.14.7	Random Flips	
	3.5.14.8	Saving Augmented Images to File	
3.5.14	Project O	bject Recognition in Photographs	02 Hours
	3.5.14.1	Overview of Photograph Object Recognition Dataset	
	3.5.14.2	Loading The CIFAR-10 Dataset in Keras	
	3.5.14.3	Simple CNN for CIFAR-10	
	3.5.14.4	Larger CNN for CIFAR-10	
	3.5.14.5	Extensions To Improve Model Performance	
3.5.15	Project: F	Predict Sentiment From Movie Reviews	02 Hours
	3.5.15.1	Movie Review Sentiment Classification Dataset	
	3.5.15.2	Load the IMDB Dataset With Keras	
	3.5.15.3	Word Embeddings	
	3.5.15.4	Simple Multilayer Perceptron Model	
	3.5.15.5	One-Dimensional Convolutional Neural Network	

Final Assessment Examination	02 Hours
------------------------------	----------